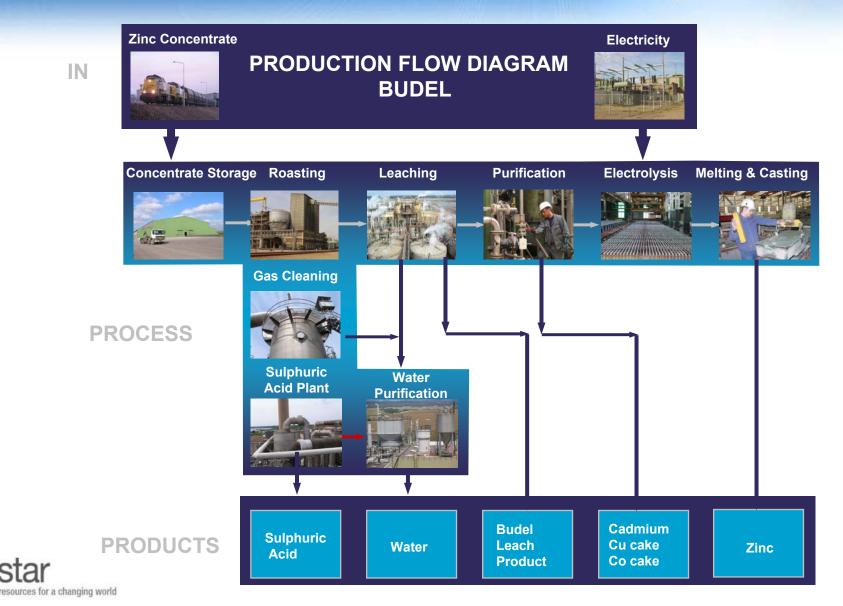


Analyst Site Visit Nyrstar Budel

25 November 2009

Jeremy Kouw: General Manager

Fred Hornung: Deputy General Manager


Nyrstar Budel

- Process
- Performance
 - Safety
 - Environmental
 - Gross Profit
 - Operating Costs
- Energy
- Summary

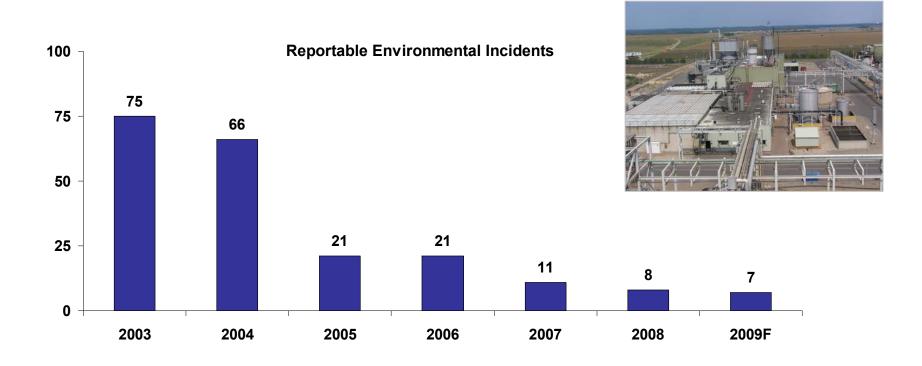

Smelting Process

Budel Production Process – Fact Sheet

- I Feed mix to Roasting
 - 20% Oxide, 30-70% Century, 10-50% other low iron concentrates
- I Calcine Production
 - 95% Roaster On-Stream Factor, Intensity 26.5 dmt/hr feed
 - Balanced to Cathode Production + Supplemented by Direct Leach Oxides
- I Acid production
 - 93% sulphur recovery, 1.2 1.4 tonnes H2SO4 for every 1 tonne market metal
- Leach/Purification
 - I ≈98.5% Zinc recovery
 - Budel Leach Product contains all Pb and Ag payable in feed, Fe and SiO2
 - I Cadmium, Copper Cake and Ni-Co cakes produced as payable by-products
- I Electrolysis
 - I 93% Current Efficiency
 - I Recycle 4% of cathode for production of zinc dust used in purification
 - Approximately 4000t Zn contained in liquor sold pa
- I Casting
 - 1 1% dross make (all recycled)
 - I SHG liquid, slab + jumbo capacity
 - I CGG capacity up to 50% of total market metal volume
 - Specialty alloys up to 20% of total market metal volume

Safety Performance

- LTR = Lost Time injury frequency Rate (the number of LTI's occurring per one million hours worked)
- RIR = Recordable Injury frequency Rate (the number of RI's occurring per one million hours worked)



Environmental Performance

- Waste free production process
- Bacteriological Water purification based on sulphide chemistry
 - Best in class waste water quality
 - Further increases metal recovery
- Minimal emissions SO2, NOx
- Remediated site, ≈ 2 million m³ material excavated
- Historical ground water contamination, controlled since 1992
- Residue ponds covered 1996 2008
- Very Low Environmental Footprint

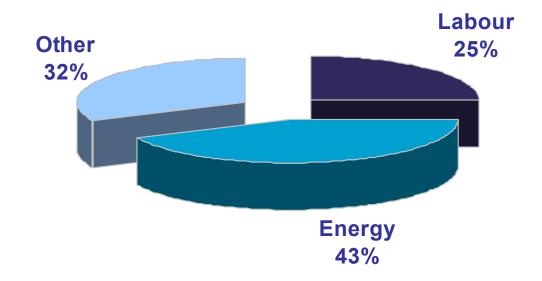
Environmental Performance

- Water purification (SRB 1992 en BDS 2000) is world's best available technology
- Further improvements to target zero incidents are planned for 2010

Financial Performance

	Budel	Budel	Budel	Budel
€millions	Smelter	Smelter	Smelter	Smelter
Unless otherwise indicated	H1 2009	H2 2008	H1 2008	2008
Zinc cathode ('000 tonnes)	109	125	125	250
Zinc market metal ('000tonnes)	104	120	119	239
Sulphuric acid ('000 tonnes gross)	125	137	139	276
Revenue	87	167	222	389
Underlying EBITDA	5	9	23	32
Capital expenditure	1	7	5	12

- Rapid response to market conditions, ramping down production and operating in "Off Peak" production mode from November 2008 until July 2009
- Roaster production constrained until a scheduled Roast and Acid shutdown in October 2009
- No major shutdowns planned in 2010



Elements of Gross Profit

€millions				
Elements of Gross Profit	H1 2009	H2 2008	H1 2008	2008
Treatment charges	33	38	45	83
Free metal contribution	15	25	28	53
Premiums	10	19	23	42
By-products	13	14	20	34
Other	-15	-11	-23	-34
Gross profit	57	86	92	178
Groce pront	31	00	JŁ	170
Gross Profit per tonne MM	H1 2009	H2 2008	H1 2008	2008
· · · · · · · · · · · · · · · · · · ·				
Gross Profit per tonne MM	H1 2009	H2 2008	H1 2008	2008
Gross Profit per tonne MM Treatment charges	H1 2009 317	H2 2008 317	H1 2008	2008 347
Gross Profit per tonne MM Treatment charges Free metal contribution	H1 2009 317 144	H2 2008 317 208	H1 2008 378 235	2008 347 222
Gross Profit per tonne MM Treatment charges Free metal contribution Premiums	H1 2009 317 144 96	H2 2008 317 208 158	H1 2008 378 235 193	2008 347 222 176

- H1 2009 Treatment Charges impacted by reduced volumes
- H1 2009 Free metal & Premiums impacted by reduced volumes and prices
- Significant reduction in acid price in H1 2009 and going forward
- Continuing to target increased sales of special alloys

Operating Costs - Zinc Smelting Industry

Apart from gross profit contribution, zinc smelters compete globally on operating costs, which consist of Labour, Energy, and Other (external services, stores)

Operating Costs

€millions Operating costs	H1 2009	H2 2008	H1 2008	2008
Employee benefits expense	14	17	15	32
Energy expenses	25	38	33	71
Other expenses	12	23	21	44
Total operating costs	51	77	70	147
Operating costs per tonne	H1 2009	H2 2008	H1 2008	2008
Operating costs per tonne Employee benefits expense	H1 2009 135	H2 2008 142	H1 2008 126	2008 134
Employee benefits expense	135	142	126	134

- I Transformational changes to deliver sustainable cost saving reductions in labour and contractor costs in 2009
- Budel is one of the most productive smelters in Europe
- Significant improvement in controlling maintenance spend and increasing effectiveness
- Significant reduction in electricity price expected for 2010 in line with market

Energy Consumption

- Electrolytic zinc production is an energy-intensive activity
- Energy-intensity per tonne of zinc metal:
 - 4,100 kWh electricity
 - ~ 85% = non-energetic energy consumption = electrolysis
 - ~ 15% = energetic energy consumption = cathode melting+ rotating equipment
 - ~ 170 kWh other energy sources (gas, oil)
- Budel is one of the most energy efficient zinc smelters worldwide
 - Participant of Energy Benchmarking Covenant
 - Participant MEE (successor program to the Benchmarking Covenant)
 - Actively assessing a range of "Green Energy" projects
- Applying for CO₂ emission credits in line with EU and NL regulations

Energy Consumption

- Electricity needs to be considered as a raw material for electrolytic zinc consumption
- $I = Zn^{2+} + 2e^{-} = Zn_{METAL}$
- I The amount of energy to make one tonne of zinc is governed by physics

Faraday's laws of electrolysis

From Wikipedia, the free encyclopedia

Several versions of the laws can be found in textbooks and the scientific literature. The most-common statements resemble the following:

Faraday's 1st Law of Electrolysis - The mass of a substance altered at an electrode during electrolysis is directly proportional to the quantity of electricity transferred at that electrode.

In the simple case of constant-current electrolysis, Q = It leading to

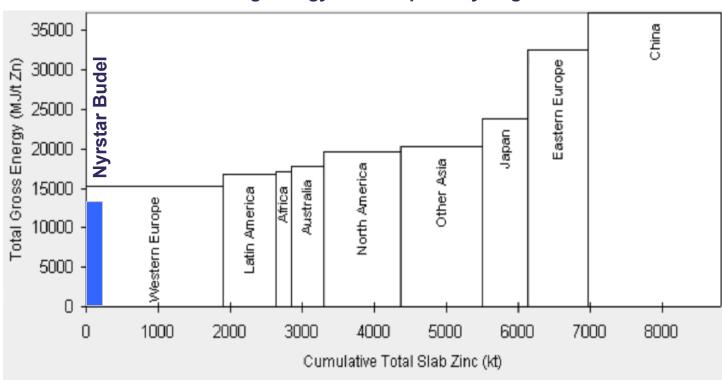
$$m = \left(\frac{It}{F}\right) \left(\frac{M}{z}\right)$$

where

m is the mass of the substance altered at an electrode

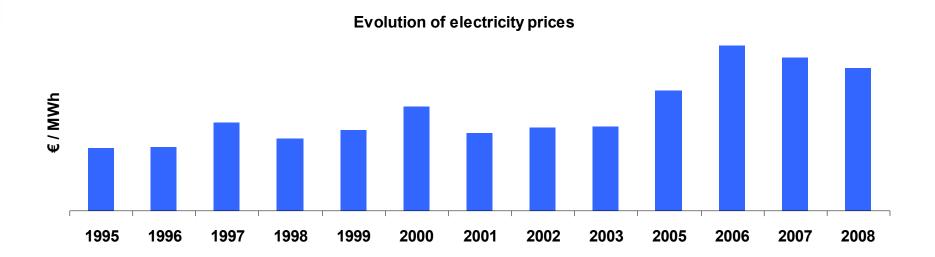
Q is the total electric charge passed through the substance

 $F = 96,485 \text{ C mol}^{-1}$ is the Faraday constant


M is the molar mass of the substance

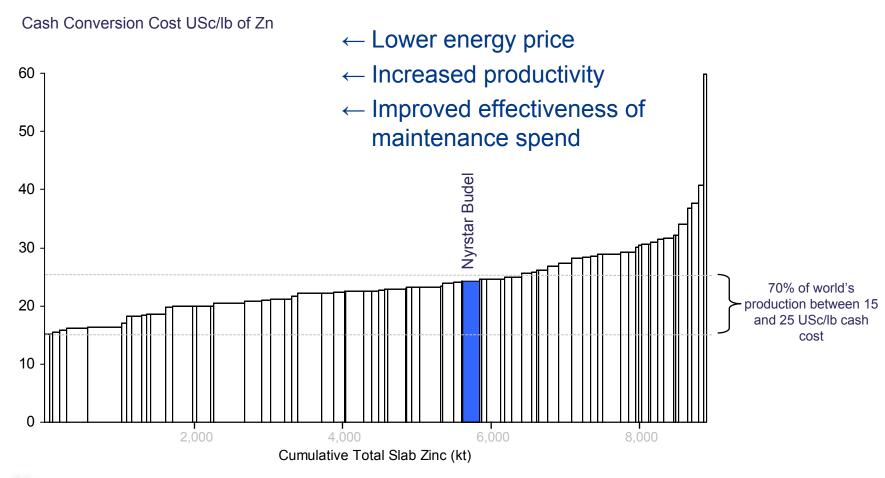
z is the valency number of ions of the substance (electrons transferred per ion)

Energy Consumption


Zinc Smelting Energy Consumption by Region

The risk of "carbon leakage" is high in the zinc sector, making it important to recognise the efficiency of developed world smelters

Energy Price Development



- Electricity prices in the Netherlands have approximately doubled since 2003
- Budel sources energy from a mix of forward and spot rates
- I The site modulates between peak and off peak operation
- I Flexibility to reduce energy consumption by more than 50% instantaneously

Source: Nyrstar 15

Cost Competitiveness

Budel in Summary

- Flexible production process
- Very low environmental footprint (SO2, CO₂, no leach waste, clean waste water)
- Waste free production process with historical issues managed
- One of the most energy efficient zinc smelters
- 20% of raw materials input from recycled material
- Important link in the Dutch and EU supply chain
- Strategically located close to major customers
- Flexible power consumer contributing to the stability of the national electricity grid
- I High productivity smelter, with well trained and flexible workforce
- Key role in employment and training in the region
- Strong ties with local community

Questions

